Misurazioni del Resampling

Visualizzazione dei risultati da 1 a 1 su 1
  1. #1
    Moderatore L'avatar di bibo01
    Registrato
    Oct 2010
    Messaggi
    4,591
    configurazione

    Predefinito Misurazioni del Resampling

    Misurazioni del Resampling


    Tutti i file di output sono generati da cPlay 2.0b26 (o successivi).

    Vengono utilizzati test tone da 1 kHz in ingresso sia a 16/44.1 che a 32/44.1:


    Upsampling 16/44.1 > 192 (SOX-vLb99.7 a sinistra e SRC 145dB a destra):


    Uno sguardo ravvicinato all'opzione “bandwidth” utilizzando un test tone a 16 bit (rumore di fondo ~130dB):


    SoX al 99,7% offre tutte le frequenze fino a 22 kHz (max è 22.05kHz). SRC offre ~96% e non si può cambiare.

    Upsampling 32/44.1 > 192:


    Downsampling 32/192 > 44.1:


    SoX SNR è meglio di 170db mentre SRC è oltre 150dB (da notare un piccolo artefatto 150dB sopra ~20kHz).

    Misure di fase fatte utilizzando un test tone di 2kHz (2 cicli per ms) a 24/44.1. Il transiente corrisponde ad un improvviso aumento di volume (50dB) da -90 dBFs a -40dbfs per 5ms:


    SRC con output a 192:
    Clicca sull'immagine per ingrandirla

Nome:   MP_transient_src192_zoom.png
Visite: 519
Dimensione:   29.4 KB
ID: 13979

    Entrambi pre e post-ringing sono equamente distribuiti.

    SoX output a 192 (fase minima):
    Clicca sull'immagine per ingrandirla

Nome:   z_transient_sox.png
Visite: 694
Dimensione:   9.7 KB
ID: 13980

    Nessun pre-ringing, ma un maggiore post-ringing. L'overshoot e il livello di ringing sono maggiori di SRC (a causa di un rigetto db più alto, una maggiore larghezza di banda di SoX e un'assenza di aliasing). Si noti che:

    1. L'impostazione di SoX su fase non lineare (non-50) influisce sulla risposta di fase ad alta frequenza del segnale originale (cioè più s'incrementano le alte frequenze più queste subiscono un maggiore spostamento di fase). Posizioni intermedie (qualsiasi tra 0 e 50) offrono un migliore equilibrio per quanto riguarda questo trade-off.
    2. Il ringing osservato è al di là dell'udito umano quando "min(input, output)" è 44,1 o superiore.
    3. Gli effetti del ringing possono essere ulteriormente ridotti attivando "alias". Questo si traduce in un altro trade-off aggiungendo artefatti da alias sopra la banda passante (larghezza di banda); ad esempio, per input a 44,1, 96% di larghezza di banda e 192k in uscita, si verifica distorsione sopra i 21.17kHz. Questi livelli sono bassi (sotto 100dbRMS) e non nella gamma udibile.


    Dilemma della Fase Minima
    Utilizzare interpolatori (cioè filtri, resamplers, ecc.) di fase minima (o fase intermedia) da' la possibilità di eliminare (o ridurre) artefatti di pre-ringing nel dominio del tempo. Alcuni DAC offrono questa possibilità e sono considerati superiori a quelli a fase lineare. Deviare dalla fase lineare compromette gravemente la precisione dell'interpolazione. Da qui il nostro dilemma, perché l'introduzione di errore di interpolazione in alcuni casi suona meglio?

    Errore di interpolazione
    Transienti che ricevono resampling risultano in rumore di pre e post-ringing. Questo può essere visto nella Risposta all'Impulso del interpolatore. In base alla progettazione (ovvero dalla somma della funzione sinc su entrambi i lati del punto centrale), si può intuitivamente capire che non elaborando l'ala destra della funzione sinc, possiamo rimuovere il pre-ringing. Non avendo l'ala destra, il dato del transiente in avvicinamento nel dominio del tempo non viene elaborato, quindi non produce alcun pre-ringing.


    Figura 1. Misurazioni di SoX VHQ da src.infinitewave.ca mostrano la risposta all'impulso per la fase lineare (a sinistra) e per la fase minima (a destra).

    Il ringing si verifica al di fuori della gamma udibile, vale a dire per 44,1k di ingresso, la frequenza di ringing è al di sopra dei 22kHz. Un esempio di output ricampionato (44,1> SRC 192k) di un transiente (aumento improvviso di volume da -90 a -40 dBFS per 5ms) è il seguente:

    Clicca sull'immagine per ingrandirla

Nome:   MP_transient_src192_zoom.png
Visite: 519
Dimensione:   29.4 KB
ID: 13979
    Figura 2. Sovracampionati a SRC 192k di 44,1. Il transiente è un segnale di ingresso 2kHz con volume crescente da -90 a -40dbFS (per 5ms). Entrambi (cioè fase lineare) pre e post-ringing sono ora presenti (vedi inserti che mostrano ringing sulla forma d'onda di basso livello -90 dBFs 2kHz) con superamento minimi.

    Si sostiene che il pre-ringing (in genere inferiore a 2,5 ms) che precede il transiente è udibile. Post-ringing non è udibile in quanto tali artefatti sono sopraffatti dallo stesso transiente, vale a dire il suono alto maschera quello più basso del post-ringing.

    Il calcolo usato per eliminare tale pre-ringing non è un semplice taglio della fascia destra. Si introduce errore di fase. Frasi come spostamento, distorsione e rumore di fase sono usate per descrivere gli interpolatori a fase non-lineare. Infatti, quello che abbiamo è un grave errore di interpolazione. Le ampiezze di segnale nel dominio del tempo sono sottoposte a cambiamento di fase a seconda della frequenza di ingresso. Questo si vede nel grafico della risposta di fase:

    Clicca sull'immagine per ingrandirla

Nome:   MP_Phase.png
Visite: 430
Dimensione:   11.7 KB
ID: 13981
    Figura 3. Misurazioni di SoX VHQ da src.infinitewave.ca mostrano fase lineare (a sinistra) e minima (a destra).

    Mentre l'output risultante può produrre lo stesso spettro di frequenza, cioè il contenuto di frequenze nella banda passante rimane inalterato, la fase è gravemente compromessa. Il caso sopra mostra frequenze di ingresso già a partire dal 4 kHz che sono cambiate (deviazione dalla linea retta), compromettendo le informazioni musicali essenziali (armoniche), come il degrado tonale. A differenza dello spostamento di fase uniforme di 180 gradi (inversione di polarità), che è udibile e desiderabile per correggere gli errori di polarità (sia in registrazione e/o di componenti a valle), l'interpolazione non lineare provoca uno spostamento di fase (l'errore aumenta con la frequenza di ingresso). Ciò significa che l'intero flusso audio subisce l'errore di interpolazione! Nel caso di interpolazione lineare, solo pre-ringing è aggiunto ai transienti del flusso audio. Post-ringing si verifica in entrambi i casi ai transienti.

    Suona meglio (a volte). Un falso paradiso?
    Tale manipolazione matematica viene talvolta sperimentata positivamente, anche quando l'intero flusso audio è inquinato da uno sfasamento non uniforme. Questo criterio adottato per una migliore qualità audio suggerisce un falso paradiso.

    Esaminando più da vicino la Figura 2, questa evidenzia che il pre-ringing è al di sopra di 22kHz e si verifica a livelli relativamente elevati (36dB in meno del picco del transiente). Ciò è estremamente importante dato che i transienti di natura sono spesso al massimo (0dBFS) o in prossimità dei livelli massimi. Tale rumore ad alto livello e ad alta frequenza crea una "tempesta perfetta" per la distorsione jitter. Le sue implicazioni si comprendono meglio attraverso la seguente analisi del Jitter Periodico:


    Figura 4. Jitter Periodico modellato per una vasta gamma di Jpp utilizzando una scansione di frequenza della gamma udibile e oltre.

    Si noti che per frequenze di ingresso sopra 22kHz, i livelli di distorsione della banda laterale sono inaccettabilmente alti anche con DAC con prestazioni di jitter più basse di 150ps Jpp. Le frequenze di jitter periodico che agiscono su tali ingressi produrranno distorsioni all'ascolto quando Jf è più alta di 2kHz. La distorsione jitter della banda laterale la cui frequenza si verifica in un offset (dato da Jf) della frequenza di ingresso avverrà nella gamma udibile. La presenza di ringing si traduce in un rumore di fondo inquinato da distorsione laterale.

    Nel dominio del tempo, rimuovendo il pre-ringing, tale distorsione udibile del jitter che precede il transiente non si verificherà. Quindi, con l'introduzione dell'errore di interpolazione togliamo la distorsione jitter associata al pre-ring. La distorsione jitter da post-ringing rimarrà ma i suoi effetti indesiderati sono mascherati dallo stesso transiente.

    Conclusione
    DAC sensibili a tale distorsione jitter potrebbero suonare meglio quando si introducono errori di interpolazione di fase minima (o intermedia). Cioè, viene sostituito un male per un altro. Si consideri un DAC con un PLL mal progettato o, peggio, senza PLL (o di un cattivo ricevitore USB/SPDIF chip): le frequenze jitter sopra 2kHz sono passate liberamente e interferiscono con il master clock causando un livello alto ed udibile di distorsione jitter della banda laterale.

    L'errore di interpolazione è inaccettabile. Nel caso la sua introduzione migliori il suono, ciò suggerisce che il DAC in uso non è efficace nella riduzione della distorsioni da jitter periodico. Un compromesso insoddisfacente.

    Tali carenze del DAC possono essere facilmente testate utilizzando un resampler con aggiustamenti della fase, tipo SoX. Sia cPlay che Foobar (con la componente DSP di SoX) forniscono questa possibilità.
    Ultima modifica di bibo01 : 26-09-2013 a 01:10

Informazioni Thread

Users Browsing this Thread

Ci sono attualmente 1 utenti che stanno visualizzando questa discussione. (0 utenti e 1 ospiti)

Discussioni simili

  1. Risposte: 15
    Ultimo messaggio: 20-03-2011, 19:54
  2. Resampling con soX
    By Massimo Bianco in forum cMP² = cMP + cPlay
    Risposte: 17
    Ultimo messaggio: 28-01-2011, 22:26
  3. Nuova aggiunta alla Guida: Misurazioni del Resampling
    By bibo01 in forum cMP² = cMP + cPlay
    Risposte: 1
    Ultimo messaggio: 15-12-2010, 17:16
  4. Risposte: 11
    Ultimo messaggio: 08-12-2010, 23:03
  5. Jitter: teoria, analisi e misurazioni
    By bibo01 in forum cMP² = cMP + cPlay
    Risposte: 0
    Ultimo messaggio: 07-12-2010, 16:09

Tags

Regole d'invio

  • Non puoi inserire discussioni
  • Non puoi inserire repliche
  • Non puoi inserire allegati
  • Non puoi modificare i tuoi messaggi
  •  
nexthardware.com - © 2002-2022