Kingston DDR3/3L DRAM for embedded applications

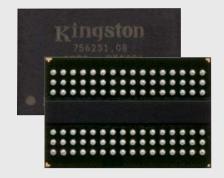
Kingston DDR3/3L

Kingston on-board DRAM is designed to meet the needs of embedded applications and offers a low-voltage option for lower power consumption.

DDR3/3L Part Numbers and Specifications

DDR3/3L Part Number	Capacity	Description	Package Size	Organization (words x bits)	Speed Mbps	VDD, VDDQ	Operating Temperature
D2516EC4BXGGB	4Gb	96 ball FBGA DDR3/3L	9.0x13.5x1.2	256MX16	1600	1.35V*	0°C ~ +95°C
D5128EETBPGGBU	4Gb	78 ball FBGA DDR3/3L	9.0x10.6x1.2	512Mx8	1600	1.35V*	0°C ~ +95°C

*Backward compatible to 1.5V VDD, VDDQ


Features

- · Double-data-rate architecture: two data transfers per clock cycle
- The high-speed data transfer is realized by the 8 bits prefetch pipelined architecture
- Bi-directional differential data strobe (DOS and /DQS) is transmitted/received with data for capturing data at the receiver
- DOS is edge-aligned with data for READS; center-aligned with data for WRITES
- Differential clock inputs (CK and !CK)
- DLL aligns DQ and DOS transitions with CK transitions
- Commands entered on each positive CK edge; data and data mask referenced to both edges of DQS
- Data mask (DM) for write data
- Posted /CAS by programmable additive latency for better command and data bus efficiency
- On-Die Termination (ODD for better signal quality — Synchronous ODT — Dynamic CDT

Asynchronous ODT

- Multi Purpose Register (MPR) for pre-defined pattern read out
- ZQ calibration for DO drive and ODT
- Programmable Partial Array Self-Refresh (PASR)
- /RESET pin for Power-up sequence and reset function
- SRT range: Normal/extended
- Programmable Output driver impedance control

